ГЛАВНАЯ

БИЛЕТЫ

ПРОИЗВОДСТВЕННАЯ
СИСТЕМА

БЕРЕЖЛИВОЕ
ПРОИЗВОДСТВО

ЭЛЕКТРОТЕХНИЧЕСКИЕ
МАТЕРИАЛЫ

* физические свойства
* диэлектрические материалы
* текстолит и асботекстолит
* фольгированные материалы
* клеи
* черные и цветные материалы
* проводниковые материалы
* медь
* полупроводниковые бронзы
* сплавы для катушек
* металлы
* токопроводящие жилы
* провода и шнуры
* провода
* силовые провода
* припои и флюсы
* общие сведения
* напряжение двигателей
* определение
* щетки
* якорная обмотка
* электродвигатели переменного тока
* асинхронные двигатели
* магнитное поле
* конструкция
* поле статора
* обмотки статора
* пусковой момент
* состав двигателя
* принцип работы
* шаговые электродвигатели
* статор
* эксплуатация
* комплектующие
* двигатели промышленного назначения
* встраиваемые двигатели
* обдуваемые двигатели
* технические данные
* взрывозащищенные двигатели
* асинхронные двигатели
* трехфазные двигатели
* модификации двигателей
* степени защиты
* технические характеристики
* двигатели с фазным ротором
* многоскоростные двигатели
* электродвигатели
* однофазные двигатели
* асинхронные двигатели 5АЕ
* габариты
* магнитный поток
* ШД-1С
* номинальный режим работы
* срок сохранности
* фронт импульсов
* сечение обмотки
* ДШР-39
* шаговые электродвигатели
* установка
* синхронные генераторы
* электрические заряды
* замкнутый контур
* перемещение зарядов
* разности потенциалов
* эквипотенциальные поверхности
* напряженность поля
* направление поля
* движение электронов
* потенциал земли
* силовые линии
* напряжение электрического поля
* поверхность проводника
* величины зарядов
* разность потенциалов
* поле земли
* силовое поле
* опыты Фарадея
* система СИ
* электроскоп
* система СГС
* конденсаторы
* электрические заряды
* электрические машины
* движение тока
* генераторы
* признаки электрического тока
* направление тока
* величина тока
* проводники электрического тока
* движение зарядов
* металлические провода
* сопротивление
* сверхпроводники
* рентгеновские лучи
* ионизация газа
* дуговые лампы
* электронные лучи
* инерция электронов
* эпоксидные клеи

СИЛОВЫЕ КАБЕЛИ

СИЛОВЫЕ
ПОЛУПРОВОДНИКОВЫЕ
ПРИБОРЫ

ВЫКЛЮЧАТЕЛИ
ПЕРЕКЛЮЧАТЕЛИ

РУБИЛЬНИКИ И
ПУСКАТЕЛИ

РЕЛЕ

ДАТЧИКИ

ТРАНСФОРМАТОРЫ

 

Электротехнические материалы

 

Рентгеновские лучи

 

Под воздействием ряда других факторов, важнейшими из которых являются рентгеновские лучи и излучение радиоактивных веществ.
Обычно явление ионизации состоит в отрыве от молекулы электрона, благодаря чему она становится положительным ионом. Освободившийся электрон сам становится отрицательным; свободным носителем за­ряда. Однако во многих случаях электрон «прилипает к какой-нибудь нейтральной молекуле, которая таким образом становится отрицательно заряженным ионом. Нередко и положительные и отрицательные ионы представляют собой не единичные ионизованные молекулы, а группы молекул, прилипших к отрицательному или положительному иону. Благодаря этому, хотя заряд каждого иона равен одному, двум, редко большему количеству эле­ментарных зарядов, но массы их могут значительно отличаться от масс отдельных атомов или молекул; этим газовые ионы существенно отличаются от ионов электролитов, представляющих всегда, как мы видели, определенные атомы или определенные группы атомов. В силу этого различия при ионной проводимости газов не имеют места законы Фараде я, столь характерные для проводимости электролитов.
Второе, также очень важное отличие ионной проводимости газов от ионной проводимости электролитов состоит в том, что для газов не соблюдается закон Ома. Измеряя величину тока через газовый промежуток и напряжение U на его границах (электродах), мы найдем» что зависимость от U (так называемая вольтамперная характеристика) имеет довольно сложный характер. В то время как для проводников, подчиняющихся закону Ома (в том числе и для электролитов), вольтамперная характеристика имеет вид наклонной прямой, покавзывающей пропорциональность между величинами для газов, в зависимости от характера разряда, она имеет разнообразную форму. В частности, в случае несамостоятельной электропроводности, изображенном на рис. 156, получается график, показанный на рис. 157. Только при небольших значениях U график имеет вид прямой, т. е. закон Ома приближенно сохраняет силу; с ростом U кривая ДО- 1 вгибается и, начиная с некоторого напряжения нескольких десятков вольт,— переходит в горизоиронами и ионами, подгоняемыми электрическим полем дуги, доводит температуру газов в столбе до 6000—7000°. Поэтому в столбе дуги почти все известные вещества плавятся и обращаются в пар, и делаются возможными многие химические реакции, которые не идут при более низких температурах. Нетрудно, например, расплавить в пламени дуги тугоплавкие фарфоровые палочки.