ГЛАВНАЯ

БИЛЕТЫ

ПРОИЗВОДСТВЕННАЯ
СИСТЕМА

БЕРЕЖЛИВОЕ
ПРОИЗВОДСТВО

ЭЛЕКТРОТЕХНИЧЕСКИЕ
МАТЕРИАЛЫ

* физические свойства
* диэлектрические материалы
* текстолит и асботекстолит
* фольгированные материалы
* клеи
* черные и цветные материалы
* проводниковые материалы
* медь
* полупроводниковые бронзы
* сплавы для катушек
* металлы
* токопроводящие жилы
* провода и шнуры
* провода
* силовые провода
* припои и флюсы
* общие сведения
* напряжение двигателей
* определение
* щетки
* якорная обмотка
* электродвигатели переменного тока
* асинхронные двигатели
* магнитное поле
* конструкция
* поле статора
* обмотки статора
* пусковой момент
* состав двигателя
* принцип работы
* шаговые электродвигатели
* статор
* эксплуатация
* комплектующие
* двигатели промышленного назначения
* встраиваемые двигатели
* обдуваемые двигатели
* технические данные
* взрывозащищенные двигатели
* асинхронные двигатели
* трехфазные двигатели
* модификации двигателей
* степени защиты
* технические характеристики
* двигатели с фазным ротором
* многоскоростные двигатели
* электродвигатели
* однофазные двигатели
* асинхронные двигатели 5АЕ
* габариты
* магнитный поток
* ШД-1С
* номинальный режим работы
* срок сохранности
* фронт импульсов
* сечение обмотки
* ДШР-39
* шаговые электродвигатели
* установка
* синхронные генераторы
* электрические заряды
* замкнутый контур
* перемещение зарядов
* разности потенциалов
* эквипотенциальные поверхности
* напряженность поля
* направление поля
* движение электронов
* потенциал земли
* силовые линии
* напряжение электрического поля
* поверхность проводника
* величины зарядов
* разность потенциалов
* поле земли
* силовое поле
* опыты Фарадея
* система СИ
* электроскоп
* система СГС
* конденсаторы
* электрические заряды
* электрические машины
* движение тока
* генераторы
* признаки электрического тока
* направление тока
* величина тока
* проводники электрического тока
* движение зарядов
* металлические провода
* сопротивление
* сверхпроводники
* рентгеновские лучи
* ионизация газа
* дуговые лампы
* электронные лучи
* инерция электронов
* эпоксидные клеи

СИЛОВЫЕ КАБЕЛИ

СИЛОВЫЕ
ПОЛУПРОВОДНИКОВЫЕ
ПРИБОРЫ

ВЫКЛЮЧАТЕЛИ
ПЕРЕКЛЮЧАТЕЛИ

РУБИЛЬНИКИ И
ПУСКАТЕЛИ

РЕЛЕ

ДАТЧИКИ

ТРАНСФОРМАТОРЫ

 

Электротехнические материалы

 

Силовое поле

 

В средней части цилиндра, вдали от его краев, эти линии имеют вид прямых, параллельных оси цилиндров. Однако, в отличие от случая однородного поля между пластинами, здесь эти эквипотенциальные прямые уже не являются равноотстоящими друг от друга; они сгущаются вблизи внутреннего цилиндра и расположены все реже и реже по мере приближения к внешнему цилиндру. Это показывает, что в радиальном направлении поле неоднородно: оно сильнее всего у внутреннего цилиндра и постепенно ослабевает по мере удаления от него. Это же видно и из рис. 53, а. В сечении плоскостью чертежа, перпендикулярной к оси цилиндра, эквипотенциальные поверхности дают эквипотенциальные линии в виде концентрических окружностей. Силовые линии, которые перпендикулярны ко всем эквипотенциальным поверхностям, представляют собой прямые, направленные по радиусам цилиндров. Мы видим, что густота силовых линий в этом поле неодинакова, она имеет наибольшее значение у поверхности внутреннего цилиндра, а наименьшее — у поверхности внешнего цилиндра, а значит, и напряженность поля достигает наибольшего значения у внутреннего цилиндра и постепенно уменьшается с удалением от его оси. Эта неоднородность тем больше, чем меньше диаметр внутреннего цилиндра по сравнению с внешним.
Таким образом, около тонкой нити можно создать электрическое поле очень большой напряженности. Это же будет наблюдаться и возле хорошего острия. Поле вблизи нити изменится незначительно, если изменять размеры внешнего цилиндра или даже менять его форму. В частности, роль внешнего цилиндра могут играть стены комнаты. Вблизи нити поле будет иметь такой же вид, как поле, изображенное на рис. 53. Нить и острие часто используют для создания в некотором месте поля большой напряженности (например, в так называемых счетчи­ках зарядов).
Упражнения. 30.2. Начертите картину силового поля между двумя параллельными пластинами, заряженными равными и противо­положными зарядами, если расстояние между пластинами: а) мало по сравнению с их размерами, б) велико по сравнению с их размерами.
Начертите такую картину, если между заряженными пластинами помещен металлический шарик или тело иной формы.
Распределение зарядов в проводнике. Клетка Фарадея. Мы видели, что поверхность проводника, как нейтрального, так и заряженного, является эквипотенциальной поверхностью (§ 24) и внутри проводника напряженность поля равна нулю (§ 16). То же относится и к полому проводнику: поверхность его есть поверхность эквипотенциальная и поле внутри полости равно нулю, как бы сильно ни был заряжен проводник, если, конечно, внутри полости нет изолированных от нашего проводника заряженных тел.